First year of Geomatics Department Engineering Geology 2018 Lecture 7

METAMORPHIC ROCKS

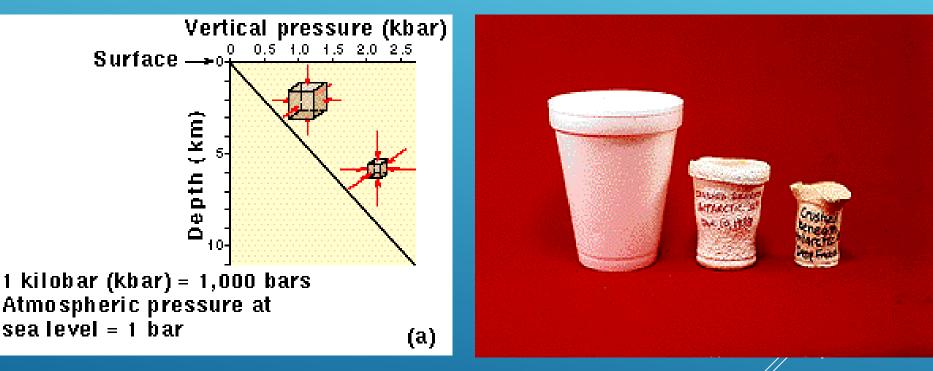
Metamorphic Rocks

Definitions

Metamorphic Rock

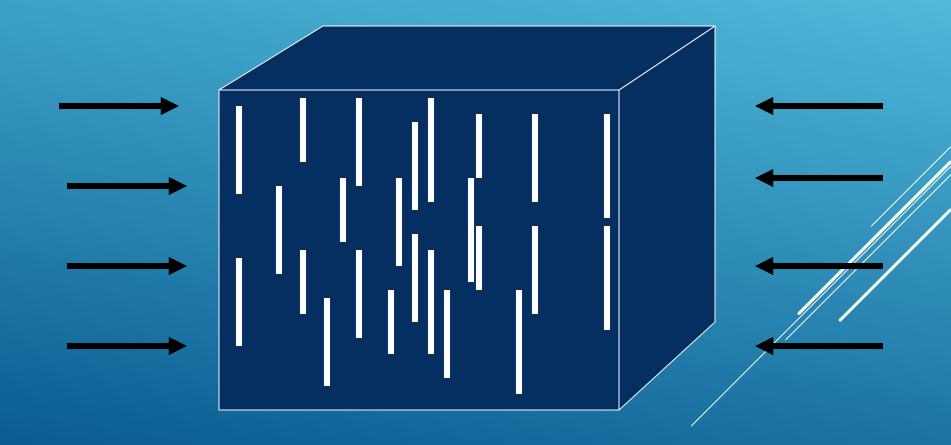
- "Meta"= Change (Crk)
- "Morph"= form (Crk)
 - a rock that has been changed from its original form (parent) by heat , pressure , and fluid activity into a new rock (daughter). Dr. Eng. Hassan Mohamed

Heat


Sources Include.....

Magma

- temperature of magma
- composition of magma
- Geothermal gradient
 - temperature increases with depth of burial
 - core of Earth is warmer than outer crust


Uniform Pressure

- Lithostatic
 - "Lithos"= rock, static= unchanged (pressure)
 - uniform (aka non-directed)
 - equal intensity from all directions by rocks

Directed Pressure one direction of squeezing is much stronger than the others

Minerals align themselves to reduce stress.

Types of Metamorphism

- Contact
 - caused by igneous activity
- Dynamic
 - aka cataclastic
 - associated with faults & earthquake zones

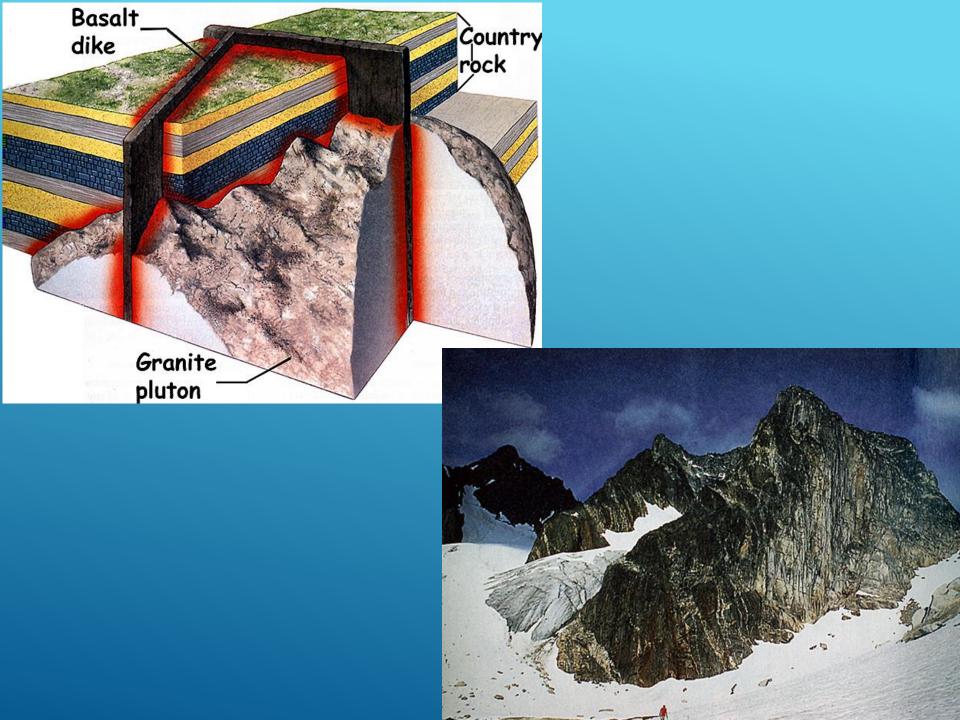
Regional

 caused by tremendous pressures associated with tectonic plate activity

Contact Metamorphism

Igneous Intrusions

- size and type of magma important


mafic magma hotter than felsic

- heat decreases away from magma

forms a zone of altered country rocks called

Aureoles

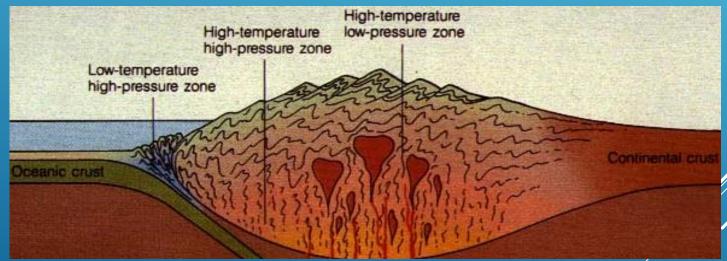
Sometimes creates a metamorphic rock called a hornfels -in essence a "cooked" rock

Dynamic Metamorphism

- Cataclastic Metamorphism
- associated with Fault Zones
 - Places where the Earth's crust ruptured
 - Rock pulverized

heat and pressure come from movement along the Fault

• resultant rock is known as a *Mylonite*


Regional Metamorphism

- Most common form of metamorphism
- caused by large scale forces
 - lithospheric plate collision
- covers very large areas
 - metamorphic belts or zones
 - Zones are characterized by Index Minerals
 > form under specific temperatures and pressures
 > metamorphic facies
- commonly associated with
- shields: stable areas of crystalline rocks

CONDITIONS THAT CAUSE ROCK TO UNDERGO METAMORPHISM INCLUDE

• Heat - Under conditions of high temperature from magma contacting pre-existing rock.

• Pressure - Deep burial and pressure from mountain formation.

TYPES OF METAMORPHIC ROCKS

Foliated: rocks with mineral crystals arranged in cable-like distorted layers/structures

- Mineral Alignment
- Banding
- Animation: Foliation
- Nonfoliated: rocks with recrystallized minerals; no layering
 - Recrystallization: This is the growth of new mineral crystals from other rocks.

Scheme for Metamorphic Rock Identification

Texture		Composition	Type of Metamorphism	Comment	Rock Name
FOLIATED	MINERAL ALIGNMENT	Mica	Regional	Low-Grade metamorphism of SHALE	Slate
		Mica, Quartz, Feldspar, Amphiboles, Garnet	(Heat and	Foliation surfaces shiny from microscopic mica crystals	Phyllite
		Mica, Quartz, Feldspar, Amphiboles, Garnet, Pyroxene	Pressure increase w/ depth)	Platy mica crystals visible	Schist
	BAND- ING	Mica, Quartz, Feldspar, Amphiboles, Garnet, Pyroxene		Compact, may split easily	Gneiss

Progression of Metamorphism

Start with a shale and then hit it with heat and pressure!

Rock Name	Rock Type	Grade of Metamorphism	
Shale	Sedimentary		
Slate Metamorphic		Low	
Phyllite	Metamorphic	Low/Intermediate	
Schist	Metamorphic	Intermediate/High	
Gneiss	Metamorphic	High	
Molten Rock	Cools into Igneous Rock	/	

More Heat & Pressure

Shale (Sedimentary Rock)

Heat & Pressure

Slate (Metamorphic Rock)

Slate (Metamorphic Rock)

Heat & Pressure

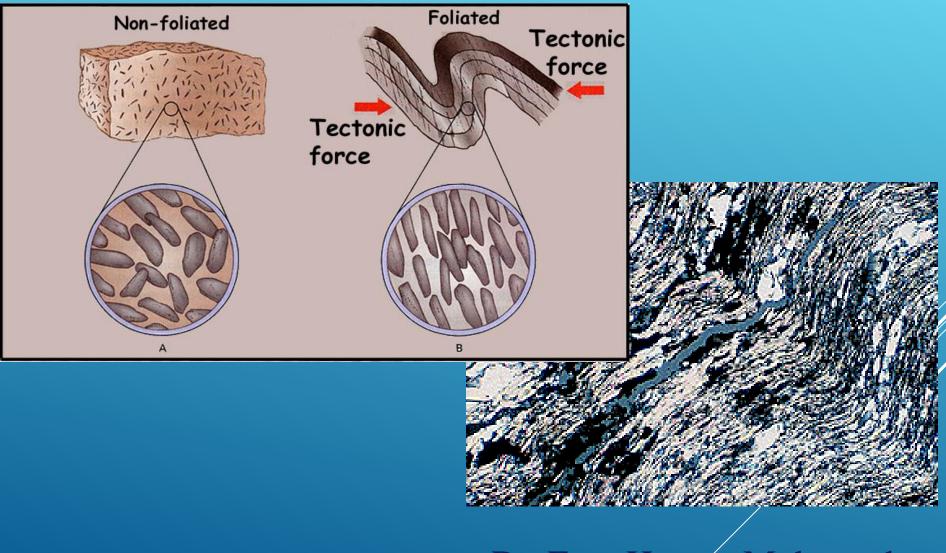
Phyllite (Metamorphic Rock)

Phyllite (Metamorphic Rock)

Heat & Pressure

Schist (Metamorphic Rock)

WITH EVEN MORE HEAT & PRESSURE (HIGH-GRADE METAMORPHISM)



... you end up with something that is really Gneiss!

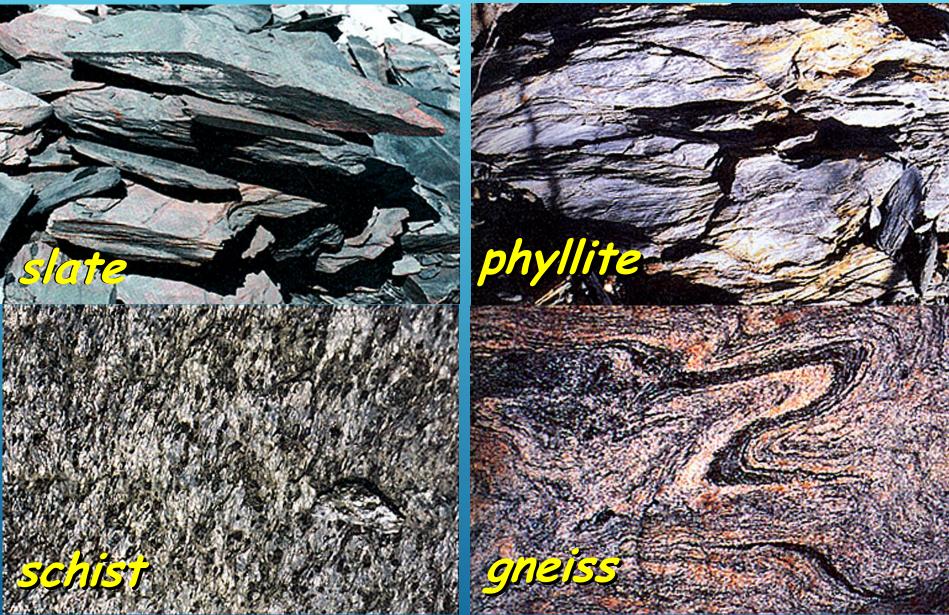
Scheme for Metamorphic Rock Identification

Texture	Composition	Type of Metamorphism	Comment	Rock Name
	Variable	Contact (Heat)	Various rocks changed by nearby magma/lava	Hornfels
IATED	Quartz	Regional	Metamorphism of Quartz <u>Sandstone</u>	Quartzite
NONFOLIATED	Calcite and/or Dolomite	(Heat & Pressure)	Metamorphism of <u>Limestone or</u> <u>Dolostone</u>	Marble
Ž	Various minerals in particles and matrix		Pebbles may be distorted or stretched	Metaconglomerate

Foliated Texture

Foliated Textures

Slatey


- ✓ looks like blackboard >dull surface
- smooth, thin layering
- breaks into flat slabs
 referred to as slatey cleavage
- no mineral grains visible

Phyllitic

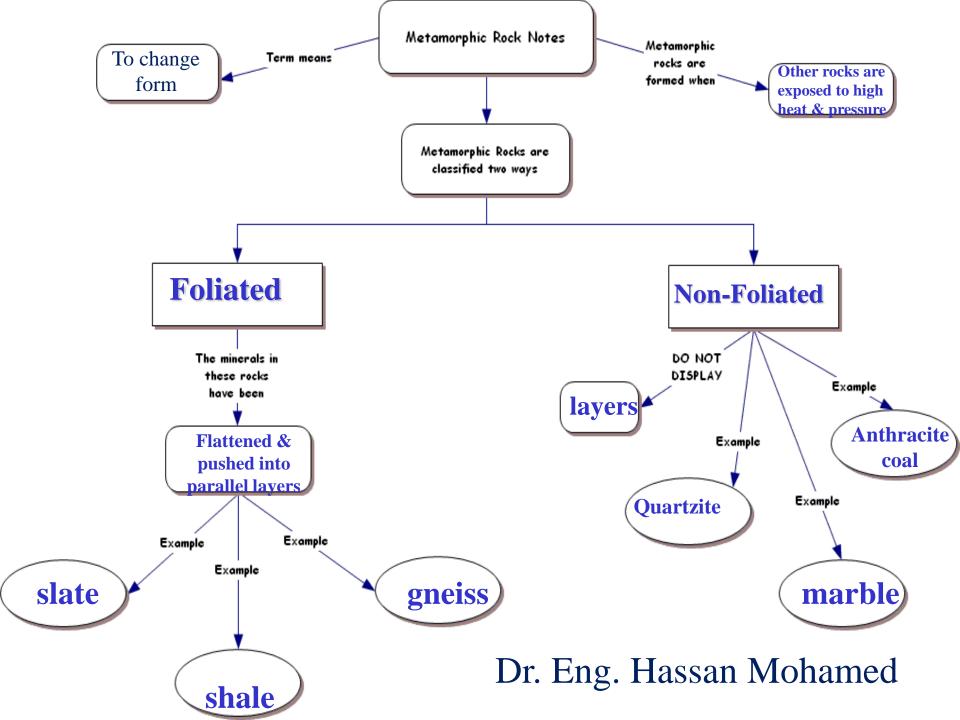
- looks like waxed surface
 has a "sheen" to it
- may have little "waves" on surface
 - >referred to as *crenulations*
- some small grains visible

- Schistose
 - visible grains
 >garnets, staurolites
 - may have shiny
 appearance
 >due to mica minerals
- Gneissic
 - larger grains
 - may look like igneous rock
 - may have crude banding
 intensely distorted
 - different minerals than schistose

Foliated MM Rocks

MM Rocks that could form as a shale (sedimentary) parent rock is exposed to increasing directed pressure and temperature

Non-foliated Rocks



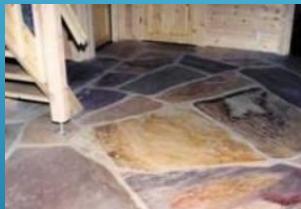
Marble:

 metamorphosed limestone

 Quartzite:
 metamorphosed quartz sandstone

GNEISS

- Gneiss is made of coarse-grained interlocking crystals. Crystals line up in pale and dark layers to give the rock a banded texture.
- Metamorphic Gneiss has many uses as a building material such as flooring, ornamental stones, gravestones, facing stones on buildings and work surfaces.



SCHIST

Schist is made of medium-grained interlocking crystals. Its shiny appearance is due to the mineral mica. Crystals line up to give the rock wrinkly layers – this is called foliation.

Although a very attractive stone, schist is rarely used as a building material as it is not very strong.

SLATE

Slate is made of fine-grained interlocking crystals which lie flat in the same direction, known as the cleavage direction, along which the rock easily splits.

Slate has many uses such as snooker tables, roofing, gravestones, flooring and garden decorations.

MARBLE

Marble (metamorphosed limestone) is made of calcium carbonate (fizzes with acid). It has medium-grained Interlocking crystals with no alignment.

THANKS

Please visit the following links:

https://en.wikipedia.org/wiki/Metamorphic_rock http://www.onegeology.org/extra/kids/metamorphic.html

https://www.youtube.com/watch?v=1oQ1J0w3x0o https://www.youtube.com/watch?v=Ncr-46YX-N0

PLEASE DON'T USE THIS PRESENTATION WITHOUT GETTING A PERMEATION FROM ITS ORIGINAL OWNER